
1

Virtualized Cloud Computing for Exascale Performance
Vijay S. Pai, Stephen P. Crago, Dong-In Kang, Mikyung Kang,

Karandeep Singh, Jinwoo Suh, John Paul Walters, and Andrew J. Younge
University of Southern California – Information Sciences Institute

Email corresponding author: vpai@isi.edu

Abstract—This paper contends that achieving real exascale
performance for a collection of useful applications requires
the management features provided by virtualization and cloud
computing. The critical concern is to achieve a performance
target while minimizing cost, and the relevant costs are largely
related to bandwidth and power. Virtualization technologies
provide the substrate for managing heterogeneous computing
platforms, providing isolation among applications, optimizing re-
source allocation and communication, and customizing operating
environments as needed for different workloads.

I. INTRODUCTION

Exascale performance enables qualitatively different kinds
of applications from previous generations of high-performance
computing (HPC), but also faces fundamentally different
challenges [1]. Although performance is the key goal in
achieving exascale, the costs are fundamentally different than
current systems. The cost of transistors and cores is rapidly
diminishing, but power remains a critical cost. Current trends
point toward “dark silicon” where systems cannot provide
enough power to supply all computational resources simul-
taneously [2]. Achieving exascale performance thus becomes
an issue of managing power consumption efficiently while
meeting workload performance needs.

Potential workloads for exascale include big data analysis,
computational biology, and multiphysics simulation [3], [4].
These workloads show diverse characteristics, such as having
different phases with performance bounds set primarily by
computation, memory bandwidth, memory latency, network
bandwidth, network latency, or I/O interactions. Differing
limitations suggests the need to use different resources with
widely varying power and performance characteristics. We
argue that for exascale to reach a diverse set of workloads,
runtime systems must support system-wide allocation and
scheduling of shared resources such as accelerators and net-
work links, intelligent control of heterogeneity, and workload-
specific operating-system customization. All of these require-
ments build naturally upon the management features of vir-
tualized cloud computing infrastructures. While virtualization
adds some overhead, recent work shows that this overhead
is shrinking and, in some cases, becoming negligible [5]–
[7]. Further overhead reductions will arise as processors and
devices continue to add hardware virtualization support [8],
[9], ideally becoming comparable to the overhead of using a
compiler rather than hand-coded assembly.

Note that exascale OS and runtime face numerous other
challenges, such as fault tolerance and parallel programming.
Our concurrent position paper addresses those issues more
thoroughly, as well as the connection between them [10].

II. PROPOSED STRATEGY

Two techniques form the foundation of the proposed OS
and runtime strategies described here: cost-based resource

allocation and dynamic adaptation. The following describes
each of these in more detail.

A. Cost-based resource allocation

Current resource allocation models in the cloud use
capability-based decision-making: for example, if an appli-
cation requests a specific CPU architecture, it can only be
assigned to a node with that architecture [11]. Similarly, code
with a GPU section must be assigned to a GPU node. However,
this model is both too restrictive and incomplete. It is too
restrictive because any system can run any code correctly, even
if not with the desired efficiency. It is incomplete because it
does not provide a system-wide way of prioritizing jobs for
heterogeneous resources or meeting power constraints.

Instead, this work suggests using a cost model for resource
allocation decisions. The cost model considers characteristics
of applications and architectures. For example, it may suggest
that a control-heavy section of code can run on an x86 CPU ten
times faster than on a GPU but that a highly concurrent region
of the same code with a CUDA implementation can run 100
times faster on a GPU. At first, these cost parameters could
be specified by the programmer; however, a better method
would be to perform application-level analysis of kernels and
correlate those to microbenchmark performance (following the
method of Saavedra and Smith [12]). Further, work should be
assigned to cores in heterogeneous systems so as to balance the
workload when running parallel applications, as the scheduler
can consider achievable platform performance to avoid load
imbalances that hurt concurrency.

Beyond core-level architecture and performance, however,
the cost model must also consider the impact of inter-core
communication. Applications will have information about
overall communication volume and frequency so that those
applications with high communication needs can be scheduled
with communicating cores topologically close to each other.
This will both reduce the network latency of critical messages
and reduce congestion. Applications with low communication
needs can be topologically assigned in a “best effort” way.

The system must also consider power-efficiency. Each re-
source will register an active power estimate with the scheduler
(again based either on an assertion by the system designer or
based on active measurements). The scheduler must also know
about system-level power constraints (such as the total amount
of power that can be fed to a given multicore chip). Power
costs arise not only from computational resources but also
from communication. Just like communication performance,
communication power depends on the volume of traffic, net-
work congestion, and the topological distance of messages.

The scheduler can use a mathematical program solver to
maximize aggregate throughput, minimize the latency of some
job, or meet some other objective function while considering
power, communication, and the performance of individual



2

components. Virtualization is a key enabling technology since
the actual details of the computational resources are hidden
from the application. Even the ISA can be considered as a
virtualizable resource as accelerators begin to include features
like virtualization support and virtualization platforms use
binary translation. For example, a code component targeted for
a GPU can be scheduled onto a CPU using binary translation
if it is not performance-critical and there is no GPU currently
available. The OS and runtime thus form the core of a
vertically-integrated system for achieving high performance.

B. Dynamic Adaptation

Run-time adaptation at both the application and sys-
tem level is desirable. Our approach to introspection and
self-management incorporates an observe-orient-decide-act
(OODA) loop. The system observes the actual behavior of
the running application, updating the information that was
previously captured in cost model parameters used when
scheduling. This includes understanding the actual sections of
code that are dynamically executed and the types of operations
used. Additionally, the system should monitor the dynamic
communication pattern using a method such as instrumented
communication libraries [13]. This analysis may lead to dif-
ferent outcomes than what was earlier predicted by either the
application-level programmer or compiler-time static analysis.

Such introspective analysis of uncertain, irregular, or chang-
ing communication patterns enables dynamic adaptation. For
example, runtime understanding of dynamic communication
motivates live migration. Although live migration is often
associated with fault tolerance, it can also be used for per-
formance management [14]. Live migration is particularly
enabled by virtualization since all state required for migration
is closely linked. Previous work has shown that correctly
mapping application ranks to actual network topology is
essential for high-performance, but has typically dependent on
programmer input [15], [16]. Runtime information can guide
process migration, using hill-climbing or simulated annealing
to gradually improve the configuration of a running job.

III. OPPORTUNITIES

The combination of virtualization, intelligent resource al-
location, and dynamic adaptation present new opportunities
for achieving high performance and low power in cloud-based
exascale systems. For example, virtualization allows nodes to
migrate to or connect to needed resources (e.g., GPUs) only
when they are actually being used, even if the hypervisor gives
the impression of having those resources always available.
Such dynamic utilization can lead to substantial power savings
and utilization improvements by statistical multiplexing —
providing only enough actual resources such that the utiliza-
tion will be 100% given that applications will not typically
use such resources all of the time. Additionally, this option
allows the scheduler to actually allocate a given resource or
just present it to the user via binary translation, recompilation,
or some other software compatibility mechanism. This can be
an issue if it is more expensive to use the resource (because of
data copying, availability, etc) than just to emulate it. Whether
through binary translation or dynamic scheduling, running jobs

in a virtualized platform can have the illusion of having their
own private resources even if those resources are actually
dynamically shared, underprovisioned, or completely absent.

Although much previous work in high-performance com-
puting has sought to minimize OS activity [17], [18], many
new workloads will actually benefit from having OS-controlled
resources such as I/O devices closely engaged with com-
putation. For example, big data analysis depends on both
complex graph-processing algorithms and timely delivery of
high-bandwidth data [19]. This observation suggests that some
applications would benefit from having full-fledged OS while
others would prefer trimmed OSes. Virtualization can provide
this combination of features by combining a lightweight OS
substrate with VM-specific OSes tuned to application needs.

Even within the scope of workloads that depend on
heavyweight OS, different applications have vastly different
needs [20]. For example, applications with complex communi-
cation structures benefit from network policies that emphasize
low latency (e.g., disabling the Nagle algorithm [21]) while
those dominated by bulk transfers prefer to minimize the
interrupt overhead of acknowledgments (e.g., by receive of-
fload). The hypervisor naturally provides isolation between the
differently-tuned OSes running in subsections of the machine
to minimize platform-wide interference.

IV. CONCLUSION

This paper contends that the virtualization and management
features of cloud systems make them an ideal design point for
exascale OS and runtime. We specifically consider utilizing
cost-based resource allocation and dynamic adaptation to
improve computational throughput, power, and utilization. We
show that recent work illustrates the viability of virtualization
technologies in an HPC environment and the potential for
energy savings when proper resource utilization is realized.
This proposed research represents a unique and novel shift
beyond current HPC technologies and will enable exascale
for a broader class of applications.

V. ASSESSMENT

• Challenges Addressed: resource management and adaption
for performance, utilization, and power efficiency

• Maturity: Grounded in large-scale cloud deployments found
throughout industry (e.g. Google, Amazon, Microsoft).

• Uniqueness: Cost-based resource allocation and dynamic
adaptation combine with lightweight, high performance
virtualization in a heterogeneous environment to drastically
shift the design of a usable exascale system.

• Novelty: Exploits new opportunities enabled by cloud
• Applicability: Managed HPC cloud potentially lowers the

barrier of entry for today’s scientists and researchers using
supercomputing technologies

• Effort: Near-term efforts focus on improving the applicabil-
ity of virtualization by minimizing overhead and supporting
live migration. Advances in virtual machine snapshotting
will drastically improve migration times. Heterogeneous
resource allocation and dynamic adaptation mechanisms
will be explored. Long term goals include system-wide
support for resiliency and performance management.



3

REFERENCES

[1] J. Dongarra, P. Beckman, T. Moore et al., “The international exascale
software project roadmap,” International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in Pro-
ceedings of the 38th International Symposium on Computer Architecture
(ISCA), Jun. 2011.

[3] A. Bishop et al., “Scientific grand challenges in national security: the
role of computing at the extreme scale,” Oct. 2009.

[4] P. Kogge et al., “Exascale computing study: Technology challenges in
achieving exascale systems,” Sep. 2008.

[5] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Proceedings of the
10th International Symposium on Pervasive Systems, Algorithms, and
Networks, 2009.

[6] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver,
and J. Dongarra, “Evaluation of the hpc challenge benchmarks in
virtualized environments,” in Proceedings of the 2011 international
conference on Parallel Processing - Volume 2, ser. Euro-Par’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 436–445. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29740-3 49

[7] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and
G. C. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in Proceedings of the IEEE International
Conference on Cloud Computing. IEEE Computer Society, 2011, pp.
9–16.

[8] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert, “Intel
virtualization technology for directed i/o,” Intel technology journal,
vol. 10, no. 3, pp. 179–192, 2006.

[9] L. Case, “Nvidia makes the GPU virtual,” PCWorld, May 2012.
[10] J. P. Walters, S. P. Crago, V. S. Pai, K. Singh, A. J. Younge, and K. M.

Zick, “Enabling resilience through introspection and virtualization,” Jul.
2012.

[11] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang, D. Mod-
ium, K. Singh, J. Suh, and J. Walters, “Heterogeneous cloud computing,”
in Cluster Computing (CLUSTER), 2011 IEEE International Conference
on, sept. 2011, pp. 378 –385.

[12] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” ACM Trans. Comput. Syst.,
vol. 14, no. 4, pp. 344–384, Nov. 1996. [Online]. Available:
http://doi.acm.org/10.1145/235543.235545

[13] M. Kang, D.-I. Kang, S. P. Crago, G.-L. Park, and J. Lee, “Design
and development of a run-time monitor for multi-core architectures
in cloud computing,” Sensors, vol. 11, no. 4, pp. 3595–3610, 2011.
[Online]. Available: http://www.mdpi.com/1424-8220/11/4/3595

[14] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for hpc with xen virtualization,” in Proceedings of the
21st annual international conference on Supercomputing, ser. ICS ’07.
New York, NY, USA: ACM, 2007, pp. 23–32. [Online]. Available:
http://doi.acm.org/10.1145/1274971.1274978

[15] P. Balaji, R. Gupta, A. Vishnu, and P. H. Beckman, “Mapping communi-
cation layouts to network hardware characteristics on massive-scale blue
gene systems,” Computer Science - R&D, vol. 26, no. 3-4, pp. 247–256,
2011.

[16] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
aware data movement and staging for i/o acceleration on blue
gene/p supercomputing systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 19:1–
19:11. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063409

[17] P. De, V. Mann, and U. Mittaly, “Handling os jitter on multicore
multithreaded systems,” in Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, ser. IPDPS ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–12.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2009.5161046

[18] S. Oral et al., “Reducing application runtime variability on Jaguar XT5,”
in Cray Users Group Conference, May 2010.

[19] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” in Cray Users Group Conference, May 2010.

[20] M. Liu, J. Zhai, Y. Zhai, X. Ma, and W. Chen, “One optimized
i/o configuration per hpc application: leveraging the configurability of
cloud,” in Proceedings of the Second Asia-Pacific Workshop on Systems,
ser. APSys ’11. ACM, 2011, pp. 15:1–15:5. [Online]. Available:
http://doi.acm.org/10.1145/2103799.2103818

[21] J. Nagle, “RFC 896: Congestion control in IP/TCP internetworks,”
Jan. 1984. [Online]. Available: ftp://ftp.internic.net/rfc/rfc896.txt,ftp:
//ftp.math.utah.edu/pub/rfc/rfc896.txt

http://dx.doi.org/10.1007/978-3-642-29740-3_49
http://doi.acm.org/10.1145/235543.235545
http://www.mdpi.com/1424-8220/11/4/3595
http://doi.acm.org/10.1145/1274971.1274978
http://doi.acm.org/10.1145/2063384.2063409
http://dx.doi.org/10.1109/IPDPS.2009.5161046
http://doi.acm.org/10.1145/2103799.2103818
ftp://ftp.internic.net/rfc/rfc896.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt
ftp://ftp.internic.net/rfc/rfc896.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt

	Introduction
	Proposed Strategy
	Cost-based resource allocation
	Dynamic Adaptation

	Opportunities
	Conclusion
	Assessment
	References

